
C3M15

Notes on Line Integrals - Green’s Theorem

GREEN’S THEOREM: Let R be a simple region in the xy -plane with a piecewise smooth boundary
C that is oriented counterclockwise. Let �F be a vector field with all relevant components and their partial
derivatives continuous on an open region containing R . Then

∮
C

�F · d�r =
∮

C

M(x, y) dx+N(x, y) dy =
∫∫

R

(∂N
∂x

− ∂M

∂y

)
dA
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Example 1 Evaluate
∮

C
�F · d�r for �F (x, y) = 〈12x2 sin y + 3xy2, 4x3 cos y + 6x2y〉 and the polygonal path

(0, 0) → (3, 0) → (2, 1) → (1, 1) → (0, 0).
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We form the integrand for the double integral in Green’s Theorem.

∂N

∂x
= 12x2 cos y + 12xy and

∂M

∂y
= 12x2 cos y + 6xy =⇒ ∂N

∂x
− ∂M

∂y
= 6xy

It follows from Green’s Theorem that
∮

C

�F · d�r =
∫∫

R

(∂N
∂x

− ∂M

∂y

)
dA

=
∫ 1

0

∫ 3−y

y

6xy dx dy

=
∫ 1

0
3x2y

∣∣∣3−y

y
dy =

∫ 1

0
3(3− y)2y − 3y3 dy

=
∫ 1

0
27y − 18y2 dy =

27
2
y2 − 6y3

∣∣∣1
0

=
15
2

Example 2 (Example 2 of C3M14 revisited) The vector-valued function was �F (x, y) = 〈−y, x〉 . Please
refer back for a diagram of the region. With M(x, y) = −y and N(x, y) = x ,
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∂N

∂x
− ∂M

∂y
= 1− (−1) = 2

So we have ∮
C

�F · d�r =
∫∫

R

2 dA = (2)area(R) = (2)
(π
2
+ 2

)
= π + 4

The computation of the area was easy - one half of a disk of radius 1 and one half of a square of side 2.

Example 3 The region R is that portion of the first quadrant between the circles of radius 1 and 2 centered
at the origin. The vector-valued function is

�F (x, y) = 〈4 + e
√

x, sin(y) + 3x2〉
and the objective is to evaluate

∮
C
�F ·d�r if C is the boundary of R traversed in a counterclockwise manner.

It is not easy to evaluate the line integral around this path, so our approach is to use Green’s theorem. We
also observe that polar coordinates provides the simplest double integral. First, we will display the region.
> with(student): with(plots):
> Q1:=polarplot([1,t,t=0..Pi/2]): Q2:=polarplot([2,t,t=0..Pi/2]):
> T:=textplot([1,1,‘R‘]))
> display(Q1,Q2,T);
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> F:=(x,y)->[4+exp(sqrt(x)),sin(y)+3*xˆ2];

F := (x, y) → [4 + e
√

x, sin(y) + 3x2]
> Nx:=diff(F(x,y)[2],x);

Nx := 6x
> My:=diff(F(x,y)[1],y);

My := 0
> grand:=Nx-My;

grand := 6x
> grand:=subs(x=r*cos(t),grand);

grand := 6 r cos(t)
> Ans:=Doubleint(grand*r,r=1..2,t=0..Pi/2);

Ans :=
∫ π/2

0

∫ 2

1
6r2 cos(t) dr dt

> Greenans:=value(Ans);
Greenans := 14

Example 4 If �F (x, y) = 〈−y/2, x/2〉 , then ∂N

∂x
− ∂M

∂y
=
1
2

− (−1
2
)
= 1 and

∫∫
R

1 dA = area(R)

gives us a way of using line integrals to determine the area of a region. If the objective is to find the
area of a region whose boundary is reasonable to parameterize, then choose the vector-valued function
�F (x, y) = 〈−y/2, x/2〉 and apply Green’s Theorem by evaluating the resulting line integral.
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Suppose we find the area enclosed by the ellipse
x2

a2 +
y2

b2
= 1. We parametrize C in the counterclockwise

direction by �α(t) = 〈a cos t, b sin t〉 for 0 ≤ t ≤ 2π . With �F (x, y) = 〈−y/2, x/2〉 we have
�F
(
�α(t)

)
= 〈− b

2
sin t,

a

2
cos t〉

�α′(t) = 〈−a sin t, b cos t〉
�F
(
�α(t)

) · �α′(t) =
ab

2
sin2 t+

ab

2
cos2 t =

ab

2∮
C

�F · d�r =
∫ 2π

0

ab

2
dt

= πab

Thus, the area of the ellipse is πab . What happens if a = b ?

Example 5 Verify Green’s Theorem for �F (x, y) = 〈y3, x3 + 3xy2〉 and the region R which lies between
y = x and y = x3 .
> with(student): with(plots): with(linalg):
> plot([xˆ3,x]x=0..1);
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> M:=(x,y)->yˆ3; N:=(x,y)->xˆ3+3*x*yˆ2;
M := (x, y) → y3

N := (x, y) → x3 + 3xy2

> F:=(x,y)->[M(x,y),N(x,y)];
F := (x, y) → [M(x, y), N(x, y)]

Let’s begin by evaluating the line integral along the cubic path.
> alpha:=[t,tˆ3];

α := [t, t3]
> Falpha:=F(op(alpha));

Falpha := [t9, t3 + 3t7]
> alphaprime:=diff(alpha,t);

alphaprime := [1, 3t2]
> grand1:=innerprod(Falpha,alphaprime);

grand1 := t9 + 3(t3 + 3t7)t2

> Lint1:=Int(grand1,t=0..1);

Lint1 :=
∫ 1

0
t9 + 3(t3 + 3t7)t2 dt

> V1:=value(Lint1);

V 1 :=
3
2

For our second path, we must start at (1, 1) and end at (0, 0) along y = x . Note how we reverse the
usual parameterization.
> beta:=[1-t,1-t];

β := [1− t, 1− t]
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> Fbeta:=F(op(beta));
Fbeta := [(1− t)3, 4(1− t)3]

> betaprime:=diff(beta,t);
betaprime := [−1,−1]

> grand2:=innerprod(Fbeta,betaprime);
grand2 := 5(−1 + t)3

> Lint2:=Int(grand2,t=0..1);

Lint2 :=
∫ 1

0
5(−1 + t)3 dt

> V2:=value(Lint2);

V 2 :=
−5
4

> Lintanswer:=V1+V2;

Lintanswer :=
1
4

From this we may conclude that
∮

C
�F · d�r = 1

4 . Now we will evaluate
∫∫

R

(
∂N
∂x − ∂M

∂y

)
dA and compare

the answers.
> Nx:=diff(N(x,y),x); My:=diff(M(x,y),y);

Nx := 3x2 + 3y2

My := 3y2

> grandGT:=Nx-My;
grandGT := 3x2

> ansGT:=Doubleint(grandGT,y=xˆ3..x,x=0..1);

ansGT :=
∫ 1

0

∫ x

x3
3x2 dy dx

> GTanswer:=value(ansGT);

GTanswer :=
1
4

And as we expected, the two answers agree.

EXERCISES

I. Evaluate the line integrals directly.

1.
∫

C
(x2 − y3) dx+ (x2 + y2) dy , C : (1, 0) → (0, 1) on x2 + y2 = 1.

2.
∫

C
(x2 − y2) dy , C : (0, 0) → (1, 2) on y = 2x2 .

3.
∫

C
(x+ 2y) dx+ y dy , C counterclockwise on the ellipse x2 + 4y2 = 1

4.
∫ (0,1)
(1,0) y(e

xy + 1) dx+ x(exy + 1) dy

II. Use Green’s Theorem to evaluate the line integrals.

5.
∫

C
(x2y+ y3 − lnx) dx+ (x cos y+ xy2) dy , where C is the polygonal path (1, 1) → (2, 1) → (2, 2) →

(1, 2) → (1, 1)

6.
∫

C
(sin y − x2y) dx+ (x cos y + xy2) dy , C is the circle x2 + y2 = 1 counterclockwise.

7.
∫

C

(
ex sin y − xy2

)
dx+

(
ex cos y + x2y

)
dy , C is the ellipse 9x2 + 4y2 = 36 counterclockwise.

Surface Area Revisited and Surface Integrals
Now that we have some experience with triple integrals in cylindrical and spherical coordinates, we may

expand the surfaces that we can parameterize to include spheres. Cylinders were discussed in Example 2 of
C3M10.
Example 1 Let’s parametrize a sphere S of radius ρ and then compute dσ . We will use a rectangle
R = {(ϕ, θ) : 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π} as the domain of g .
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g(θ, ϕ) =


x ρ sinϕ cos θ

y ρ sinϕ sin θ
z ρ cosϕ


 0 ≤ θ ≤ 2π

0 ≤ ϕ ≤ π

And

∂g

∂θ
=


 −ρ sinϕ sin θ

ρ sinϕ cos θ
0


 ∂g

∂ϕ
=


 ρ cosϕ cos θ
ρ cosϕ sin θ

−ρ sinϕ




The cross product (note the order) is

∂g

∂ϕ
× ∂g

∂θ
=

∣∣∣∣∣∣
ρ cosϕ cos θ ρ cosϕ sin θ −ρ sinϕ
−ρ sinϕ sin θ ρ sinϕ cos θ 0

�i �j �k

∣∣∣∣∣∣
=

〈
ρ2 sin2 ϕ cos θ, ρ2 sin2 ϕ sin θ, ρ2 sinϕ cosϕ cos2 ϕ+ ρ2 sinϕ cosϕ sin2 θ

〉
=

〈
ρ2 sin2 ϕ cos θ, ρ2 sin2 ϕ sin θ, ρ2 sinϕ cosϕ

〉

So we have ∥∥∥∥ ∂g∂ϕ × ∂g

∂θ

∥∥∥∥ = ρ2
√
sin4 ϕ cos2 θ + sin4 ϕ sin2 θ + sin2 ϕ cos2 ϕ

= ρ2
√
sin4 ϕ+ sin2 ϕ cos2 ϕ

= ρ2| sinϕ| = ρ2 sinϕ, (0 ≤ ϕ ≤ π)

dσ = ρ2 sinϕdϕdθ

Does this look familiar? It should.
If we wish to find the surface area of this sphere we compute

∫∫
S

‖dS‖ =
∫∫

S

dσ

=
∫ 2π

0

∫ π

0
ρ2 sinϕdϕdθ

=
∫ 2π

0
−ρ2 cosϕ

∣∣∣∣
π

0

=
∫ 2π

0
2ρ2 dθ = 2ρ2θ

∣∣∣∣
2π

0

= 4πρ2
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Now we are ready to introduce
SURFACE INTEGRALS

Suppose we wish to compute the average temperature on a surface. We would need a function that
yielded the temperature at each point on the surface. Then we would integrate that function over the surface
and divide this result by the surface area to get the average. This approach was introduced in the single
variable case in Calculus I or II.

If f is a real-valued function defined on a surface S parametrized by g on D , then the integral of f
over S is defined by

∫∫
S

f‖dS‖ ≡
∫∫

S

f dσ =
∫∫

D

f
(
g(u, v)

)∥∥∥∥∂g∂u × ∂g

∂v

∥∥∥∥ du dv

PARALLEL Compare the working definitions for line integrals and surface integrals

∫
C

f ds =
∫ b

a

f
(
�α(t)

)‖�α′(t)‖ dt
∫∫

S

f dσ =
∫∫

D

f
(
g(u, v)

)∥∥∥∥∂g∂u × ∂g

∂v

∥∥∥∥ du dv

EXAMPLE 2 Let’s compute the surface integral
∫∫

S

ez dσ where S is the sphere of radius a . We may

let dσ = a2 sinϕdϕdθ from what we found in the preceding example. Thus

∫∫
S

ez dσ =
∫ 2π

0

∫ π

0
ea cos ϕa2 sinϕdϕdθ

(
u = a cosϕ

du = −a sinϕdϕ
)

= a

∫ 2π

0
−ea cos ϕ

∣∣∣∣
ϕ=π

ϕ=0
dθ

= a

∫ 2π

0
−e−a + ea dθ

= 2πa
(
ea − e−a

)

THE UNIT NORMAL VECTOR �n(u, v). Earlier we found
∂g

∂u
× ∂g

∂v
, the fundamental cross product,

and mentioned that it is a vector that is orthogonal or normal to the surface S . But
∂g

∂v
× ∂g

∂u
= − ∂g

∂u
× ∂g

∂v
is also normal to the surface and is opposite in direction. At this point we must read about oriented surfaces
or listen to what the instructor says about them. Remember, the Möbius strip is not orientable while the
surface of a sphere is orientable. Consequently, we may refer to the “outward” normal, which means that a
minus sign may be involved implicitly. In any case, we write

�n =
∂g
∂u × ∂g

∂v∥∥∥ ∂g
∂u × ∂g

∂v

∥∥∥
which is a unit normal to the surface.

As in RECALL, we assume that a vector field �F is defined on the surface S parametrized by g on D .

In C3M10 we defined dσ =
∥∥∥∥∂g∂u × ∂g

∂v

∥∥∥∥ du dv . A parallelogram was alluded to then, but was not specified.

Consider the parallelogram generated by the two vectors, ∂g
∂u and ∂g

∂v , at the point g(u, v) on the surface
S . Each is tangent to S and so is this parallelogram that they generate. By multiplying the first vector by
du and the second by dv , a smaller parallelogram is determined and the length of their cross product is the
area of this parallelogram. This length is regarded as an element of area, just like dx dy was when double
integrals were introduced.
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dS =
∂g

∂u
du× ∂g

∂v
dv

=
∂g

∂u
× ∂g

∂v
du dv

= �n

∥∥∥∥∂g∂u × ∂g

∂v

∥∥∥∥ du dv

= �n dσ

and dσ = ‖dS‖

Suppose that �F is a vector-valued function and that a path Γ and a surface Σ are in its domain. If
Γ is parameterized by �α(t) and �T = �α′(t)/‖�α′(t)‖ is the unit tangent, then �T ds and ds for line integrals
are analogous to dS and dσ , respectively, for surface integrals. While �F · �T provided the component of �F
tangential to the path, �F · �n will provide the normal component of �F at the surface. We may interpret this
last entity as rate of flow outward at the surface if the function �F represents fluid flow. For this reason we
define the

Flux Integral of �F over S

∫∫
S

�F · �n dσ =
∫∫

D

�F
(
g(u, v)

) · �n
∥∥∥∥∂g∂u × ∂g

∂v

∥∥∥∥ du dv

=
∫∫

D

�F
(
g(u, v)

) ·
(
∂g

∂u
× ∂g

∂v

)
du dv

which simplifies because of
∥∥∥ ∂g

∂u × ∂g
∂v

∥∥∥ in both numerator and denominator. Actually, we will be more

concerned about integrals of this type when the vector-valued function is the CURL of �F , i.e. ∇ × �F .

EXAMPLE 3 (to be revisited)

Integrate the normal component
of the curl of �F (x, y, z) = 〈y2, x,−xz〉 over the surface
S = {(x, y, z) : z = 9− x2 − y2, z ≥ 0} . That is, evaluate

∫∫
S

(∇ × �F ) · �n dσ

First,

∇ × �F =

∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

y2 x −xz
�i �j �k

∣∣∣∣∣∣ = 〈0, z, 1− 2y〉

We parametrize S as a function of r and θ over the rectangle
D = {(r, θ) : 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π} .

g(r, θ) =


 r cos θ
r sin θ
9− r2


 ∂g

∂r
=


 cos θ
sin θ
−2r


 ∂g

∂θ
=


 −r sin θ

r cos θ
0
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And we compute the other components of the integral, beginning with the curl of �F evaluated at g(r, θ).

(∇ × �F )
(
g(r, θ)

)
= 〈0, 9− r2, 1− 2r sin θ〉

∂g

∂r
× ∂g

∂θ
=

∣∣∣∣∣∣
cos θ sin θ −2r

−r sin θ r cos θ 0
�i �j �k

∣∣∣∣∣∣ = 〈2r2 cos θ, 2r2 sin θ, r〉

(∇ × �F )
(
g(r, θ)

) ·
(
∂g

∂r
× ∂g

∂θ

)
= (9− r2)(2r2 sin θ) + r − 2r2 sin θ

= 16r2 sin θ − 2r4 sin θ + r

Putting this all together we have

∫∫
S

(∇ × �F ) · �n dσ =
∫ r=3

r=0

∫ θ=2π

θ=0
(16r2 − 2r4) sin θ + r dθ dr

=
∫ r=3

r=0
−(16r2 − 2r4) cos θ + rθ

∣∣∣∣
θ=2π

θ=0
dr

=
∫ 3

0
2πr dr = πr2

∣∣∣∣
3

0

= 9π

We will return to this example very soon.
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